

ZapCloud integration

 ZapCloud 5.8.0, revision 2020.04.17

Table of Contents
ZapCloud API ... 3

Authentication .. 3
API documentation ... 3

Authorizing charge requests ... 4
Web hook authorization ... 5
OCPP authorization ... 9

Message subscription .. 11
Credentials .. 11
Message format .. 12

State observation reference ... 13

Common use cases ... 15
Authorization and payment solutions ... 15
Dynamic load balancing .. 16
Dashboards ... 16

Page 2 of 16

ZAPTEC’s charging stations are cloud connected EV charging stations. Cloud connection
allows multiple charging stations to work in collaboration to maximize efficiency. It also
enables a range of other options like payment solutions and smart house integration.

Currently there are four ways to interact with, and receive information, from charging
stations that will be detailed in this document:

1. ZapCloud API
2. ZapCloud web hooks
3. Message subscription
4. OCPP-J 1.6

To enable the integration options discussed in this document, your charging stations need to
be connected to the internet. This can be done in multiple ways, please refer to the
appropriate installation manual for available options. It also needs to be configured as part
of an EV-charger installation in ZAPTEC Portal (https://portal.zaptec.com). The installation
reflects the physical circuits and other limitations enforced for the group of chargers. When
a charger is in use, this configuration and data received from other charging stations in the
installation are used to continuously monitor, control, and optimize the installation.

Page 3 of 16

ZapCloud API
The ZapCloud API contains methods to request information related to ZAPTEC charging
stations and their installations. It also contains methods to allow 3rd parties to adjust some
runtime parameters. The API is REST based and uses OAuth for authentication.

Authentication
The API methods need to be called with a valid OAuth bearer token. This token is obtained
by posting the following as application/x-www-form-urlencoded data to:
https://api.zaptec.com/oauth/token:

• grant_type = password
• username = {your username}
• password = {your password}

For a successful request an access_token will be provided. This token needs to be
provided through the Authorization header for any API requests:

Authorization: Bearer {access_token}

Most methods in the API requires a user with owner permissions for the installation
and/or charger. If you’re not the owner of the installation, and need to use these
methods, any user with owner role for the installation can grant access.

API documentation
The current API documentation is maintained at: https://api.zaptec.com/help/index.

The ZapCloud API documentation is interactive, and after logging in using the login field at
the top of the web-page, API methods can be executed through the Swagger UI.

Part of the API is marked as deprecated. Do not create integrations using any
deprecated methods as these will be removed without warning. For the same reason,
if you are already using deprecated method, it is required that you refactor your code
as soon as possible.

For API methods returning charger state observations, see the list of supported
observation/state IDs in chapter State observation reference.

Page 4 of 16

Authorizing charge requests
Before a vehicle connected to a charging station will be allowed to charge, it has to be
authorized. Currently there are 3 authentication and authorization providers: ZAPTEC’s
internal authorization, Web hooks and OCPP-J 1.6. Independent of the authorization method
selected for your installation, the following sequence describes communication between
vehicle, charging station, ZapCloud and authorization provider:

Authorization providers

• Internal authorization
This is the default authorization option, and by default internal authorization will
authorize all charge requests as anonymous charge sessions. It is possible to
configure authorization which will prevent charge for all but authorized users. If
authorization is required, the user needs to authenticate using RFID token or ZAPTEC
app, and needs to have user-permission to the charging station or installation, before
charge will start.

• Web hook authorization
Using this option it is possible to allow 3rd parties to authorize charge requests.
External authorization and 3rd party payment solutions can be implemented using
these web hooks (see more details on the Web hook authorization chapter). Two
web hooks can be configured:

Page 5 of 16

o Session start – will be called before a session can start. The 3rd party can
control if the session is allowed to start

o Session end – will be called after a session has completed, with information
like session start/end times, and energy consumed

• OCPP-J 1.6 Core
Authorization is done using OCPP-J 1.6 Core. This allows the installation to be
integrated with other OCPP enabled cloud solutions.

Web hook authorization
Web hooks is a simple way to integrate external authorization providers. Before a charge is
allowed, a web hook at the remote provider is called (HTTP POST) and charge is only allowed
if remote provider authorize the request.

Configuration
Web hook configuration is found in the installation details page when the installation is
configured with web hooks authorization.

- Authentication URL
This configuration option is used to configure the URL for an OAuth token service. If
provided, before posting data to a web hook, an OAuth bearer token will be obtained
from this URL. The bearer token will be provided through the Authorization header
when posting to the web hooks, i.e.: Authorization: Bearer
{access_token}. This option is only applicable if calls to web hooks must be
authenticated using OAuth.

- Authentication payload
If authentication URL is configured, the payload is provided to the authentication URL
to obtain the OAuth bearer token. Format of the payload must match your OAuth
token service. The payload is posted to the authentication URL with content type
application/x-www-form-urlencoded. Example of a plain OAuth payload:
grant_type=password&username={username}&password={password}

If authentication URL is not provided, username and password from the payload will
be provided in the Authorization header when posting data to the web hooks (HTTP
basic). For HTTP basic mode, the payload must be provided as a query string with
username and password, i.e.: username={username}&password={password}

- Session start URL
The web hook URL to call before a session is authorized to start. Sessions can be
denied starting, depending on the result of the request. If external authorization is
enabled and this web hook is not provided, the installation will use ZapCloud internal
authorization

- Session end URL
The URL to call after a charge session is finished (vehicle was disconnected from the
charging station)

Though webhook authentication can be omitted, production web hooks should always
require authentication and be served from an HTTPS endpoint.

Page 6 of 16

Web hooks
Web hooks are configurable HTTP methods that is called by ZapCloud at certain points in the
charge process. The individual web hooks are detailed below. Please note that all web hooks
should respond with the appropriate JSON payload, as detailed below, using content-
type: application/json.

Session start
The session start web hook will be called when a user initiates a charge by connecting an EV
to a charging station. The hook will be called with information on what charger and
installation is requesting charge, and an optionally scanned RFID token code to identify the
user. The 3rd party web hook implementation must look up the user based on the provided
RFID token, or by linking the user to charger using other options, e.g. through a 3rd party
app, SMS or similar. If charge is authorized the 3rd party system must create and return a
unique UUID1 session identifier to authorize the session. This identifier will be used to
reference the session in the ZapCloud database and in further communication. If the request
is not authorized, the service should return a HTTP 401 response. For other failure situations
not related to authorization or authentication, the service should send an appropriate failure
status code (>=400).

For as long as the service returns HTTP 401 responses, the web hook will be polled every 10
seconds until one of these events occur:

- First failed authorization attempt with RFID token
- Poll timeout of 5 minutes have elapsed
- Charger is disconnected from vehicle

The user must scan RFID token after connecting to the charger. Because of this 3rd parties
requiring RFID tokens will get session start requests without token code until this have been
scanned. If RFID token is required, the 3rd part web hook should return 401 unauthorized to
allow the authorization to be retried.

Any HTTP error code other than 401 will immediately deny charge and stop authorization.
Because of this, status codes other than 200 and 401 should only be used in abnormal error
situations.

There is no display on the charging station and we have no way of informing about rejection-
causes, other than flashing the LED Z-logo. Hence there is no need for the web hook to
return user messages. A message can however be returned, and ZAPTEC will log these error
messages for debugging purposes. For failed authorization attempts the charger Z-logo will
flash red. 3rd parties authorizing users through their own apps, can provide more detailed
messages in the app.

Web hook communication flow:

1 https://en.wikipedia.org/wiki/Universally_unique_identifier

Page 7 of 16

Session end
For pure authorization purposes, the charge start web hook is all that is required. If, in
addition, payment should be processed after a charge session or a 3rd party needs to
maintain a charge log, more information is required to be posted to the 3rd party system.
This is done using the session end web hook.

After a charge session is completed (i.e. vehicle is disconnected), information about the
session is posted to the configured web hook. The web hook will be provided the following
details:

- Session ID
This is the UUID created when authorizing the session, either by 3rd party or
ZapCloud.

- Session start time
- Session end time

Note: session ends when vehicle is disconnected, not when it was fully charged. The
reason for this is that after a charge is initially completed, the car may at any point
request more power, e.g. for cabin or battery heating.

- Consumed energy
kWh

Web hook communication flow:

Page 8 of 16

The web hook is called after the session have been closed in the ZAPTEC database. If session
end call fail, retries will be done periodically until success or timeout. Session status can at
any point be requested from the API, see more details in section API: Session end.

For failures, we recommend that a detailed error message be returned in addition to the
HTTP status code. This will be logged and better allow us to debug failure scenarios.

API: Session end
In addition to the below web hooks, an API method is provided to check the status of any
given session. This can be used to check the status of a session, or request details of sessions
whose session end requests have failed.

Sessions are referenced by their UUID session ID and the API method returns the same data
as provided to the session end web hook.

More details about the session API can be found here:
https://api.zaptec.com/help/index#!/Session/Session_Get

Page 9 of 16

Other details

- Serialization:
o Dates are provided as ISO 8601 UTC strings: 2017-02-06T09:56:25Z
o UUID’s are provided and expected as strings in the following format (.NET

GUID): 123e4567-e89b-12d3-a456-426655440000
- We do not expect users to be common across ZapCloud and the integrating party.

The solution allows 3rd parties to integrate and authorize their own users, without
any user synchronization between systems.

- For load balancing ZapCloud needs to know the topology of the installation, it’s
circuits and chargers. Even though, for authorization purposes, this may also need to
be partly maintained in a 3rd party system, these details must exist in ZapCloud.

- Charge sessions authorized through 3rd parties will be created and stored in the
ZapCloud charge session database. These sessions will be visible in ZapCloud as part
of the statistics/charge history for the installation. Because we have no details of the
users, these sessions will be anonymous. If there is a need for user specific statistics
or logs, this will have to be provided by the 3rd party system.

OCPP authorization
Enabling OCPP authorization allows charging stations in the installation to connect to an
OCPP cloud for authorization and other OCPP features. Currently most of OCPP-J 1.6 Core is
supported. OCPP integration is mainly aimed at external payment operators, and all
methods required for session management and payment are implemented:

- Charge point to cloud:
o Authorize
o BootNotification
o Heartbeat
o MeterValues

§ By default, meter values are sent every 2 minutes when charger has
an active transaction. Interval can be changed using configuration key
MeterValueSampleInterval. Set to 0 to disable meter values.

o StartTransaction
o StopTransaction
o StatusNotification

- Cloud to charge point
o ChangeAvailability

§ Provided but non-functional (returns AvailabilityStatus.Rejected)
o ChangeConfiguration
o ClearCache

§ Provided but non-functional (returns ClearCacheStatus.Rejected)
o GetConfiguration
o RemoteStartTransaction

§ IdTag set using this method will time out after 120s
o RemoteStopTransaction
o Reset

Page 10 of 16

o UnlockConnector
§ Provided but non-functional (returns UnlockStatus.NotSupported)

o GetDiagnostics
§ Charger will upload a set of pre-defined observations to the provided

FTP or HTTP POST location
o UpdateFirmware

§ Location is ignored and firmware will always be downloaded from
ZapCloud. RetrieveDate and Retries are ignored, and firmware update
will be instantly triggered

Configuration
OCPP configuration is found in the installation details page when the installation is
configured with OCPP authorization.

- URL
The websocket URL used by chargers for connecting to the OCPP cloud. {deviceId}
will be replaced with the charger’s device Id (serial no.) when connecting.

Example:
For charger ZCS000143, ws://ocpp.example.com/devices/{deviceId} will at
runtime be expanded to ws://ocpp.example.com/devices/ZCS000143.

- Initial device password
For large installations it may not be practical to manually set external password on
each charging station. The initial password is a common password used by all
charging stations in the installation, and allows the OCPP cloud to remotely set a new
password after the initial connection. This process is described in chapter 6.2.2.
Charge point authentication of the OCPP 1.6J specification.

- Default id tag
ID tag used in StartTransaction when authentication is disabled. If no default id tag is
provided an empty string is used. Please note that this option is currently only used
for installations using the beta backend.

When OCPP is enabled for the installation, additional configuration options are enabled for
charge points:

- URL
Used when the device serial no. cannot be used when connecting to the OCPP cloud.
Specify the full URL the charge point will use when connecting.

- Password
The password used when connecting the charging station to OCPP

Passwords for OCPP (installation Initial device password, and charger External
password) are required to be 20 bytes. The password need to be provided as a hex
string, with a maximum length of 40 characters. Shorted passwords are allowed, and
will be 0-padded to 40 characters.

Page 11 of 16

WebSocket ping/pong
By default, WebSocket ping is disabled from charger. If connecting to an OCPP cloud that
does not provide WebSocket ping functionality, charger ping should be enabled through
setting OCPP configuration key WebSocketPingInterval to a value greater than 0 (ping
interval in seconds).

Message subscription
An installation can be configured with an AMQP (Azure Service Bus) message subscription.
3rd parties can connect to subscriptions to receive continuous push notifications when
charging station’s state changes. State observations are details such as charge mode, charge
current, session energy etc. A list is observations provided to messaging subscriptions can be
found in chapter State observation reference.

Message subscriptions must be activated per installation. This is done through the “Message
subscription” option under advanced installation settings in ZAPTEC Portal. Please note that
subscriptions are automatically removed after 14 days without use.

Enabling a subscription will configure an Azure Service Bus Topic for your installation.
Messages received from installation chargers will be broadcast to this topic.

There is a wide range of options available for receiving messages from Azure Service Bus:
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-
use-topics-subscriptions. In addition to using Microsoft’s Service Bus libraries, it is also
possible to consume messages using the standard protocol AMQP 1.0
(https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-amqp-
overview).

Credentials
After messaging subscription is enabled connection details can be retrieved either:

- For production purposes:
o Connection details must be retrieved from this API method:

https://api.zaptec.com/help/index#!/Installation/Installation_GetMessagingC
onnectionDetails; accessible by users with installation owner or service roles.

As connection credentials and host can change at any time, it is important to query
message subscription connection details from our API whenever you are connecting!

- For development or testing purposes:
o Connection details can be manually retrieved in ZAPTEC Portal advanced

installation settings; accessible by users with installation owner or service
roles.

Page 12 of 16

Connection details can be combined as a Service Bus connection string:

Endpoint=sb://{Host}/;SharedAccessKeyName={UserName};SharedAccessKey={Pass
word};EntityPath={Topic}

Messages are published to a topic, but can only be received from the topic subscription2.
Depending on the library used to connect to the service bus topic, you may need to combine
the topic and subscription name in your connection settings. The full name of the topic
subscriptions is: {Topic}/subscriptions/{Subscription}

Note that message subscriptions will be disabled after 14 days without messages being
sent to the subscription (e.g. chargers are offline), or without messages being
consumed.

If your subscription has been disabled you need to manually re-enable this though
ZAPTEC Portal. Please note that connection details will be reset when subscription is
disabled.

Message TTL is 5 minutes. Meaning that any state observation not consumed within 5
minutes will be lost.

Message format
Messages are provided as JSON-serialized ChargerState objects
(https://api.zaptec.com/help/index#!/Charger/Charger_ChargerState), containing:

- ChargerId
The UUID of the charger providing the message

- StateId
The ID of the changed state observation – list of supported state observation Id’s can
be found in chapter State observation

- Timestamp
The UTC timestamp when the state observation was changed, provided as an ISO
86013 string

- ValueAsString
The new state value, serialized as a string

o Boolean: true = “1”, false = “0”

2 https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-nodejs-how-
to-use-topics-subscriptions#what-are-service-bus-topics-and-subscriptions
3 https://en.wikipedia.org/wiki/ISO_8601

Page 13 of 16

State observation reference

Id Description
-2 IsOnline

• 1: charger is online
• 0: charger is offline

201 TemperatureInternal5
Internal temperature sensor 5 in degrees centigrade

202 TemperatureInternal6
Internal temperature sensor 6 in degrees centigrade

270 Humidity
Internal humidity in percent

501 VoltagePhase1
Output voltage phase 1 in volts

502 VoltagePhase2
Output voltage phase 2 in volts

503 VoltagePhase3
Output voltage phase 3 in volts

507 CurrentPhase1
Output current phase 1 in amperes

508 CurrentPhase2
Output current phase 2 in amperes

509 CurrentPhase3
Output current phase 3 in amperes

513 TotalChargePower
Total instant charge power in watts

519 SetPhases
• 1: TN phase 1
• 2: TN phase 2
• 3: TN phase 3
• 4: TN phase 1/2/3
• 8: IT phase 1
• 6: IT phase 2
• 5: IT phase 3

553 TotalChargePowerSession
Total energy delivered in the current charge session in kWh

708 ChargeCurrentSet
The allocated charge current for SetPhases in amperes

710 ChargerOperationMode
• 1: no vehicle connected to charging station
• 2: vehicle connected; requesting to charge
• 3: vehicle connected; charging
• 4: NOT IN USE: vehicle connected; charging, changing current
• 5: vehicle connected; finished

711 IsEnabled

Page 14 of 16

• 1: charger is enabled
• 0: charger is disabled

721 SessionIdentifier
The current session Id (GUID/UUID)

804 Warnings
809 CommunicationSignalStrength

• >= -70: reliable network connection (recommended) 4
• < -70: minimal signal for connection, packet loss may occur
• < -80: unreliable connection, charger may randomly disconnect
• < -90: unusable

911 SmartComputerSoftwareApplicationVersion
Charger firmware version

4 https://support.metageek.com/hc/en-us/articles/201955754-Understanding-WiFi-Signal-Strength

Page 15 of 16

Common use cases

Authorization and payment solutions
Payment solutions, or solutions where an external system should authorize users, can be
built using the ZapCloud web hooks discussed in chapter Web hook authorization, or by
using ZapCloud’s OCPP-J 1.6 Core integration option.

- Web hooks
o The integration should expose two OAuth 2.0 or HTTP basic authenticated

HTTPS end points:
§ Session start

Will be called before charge is authorized. The 3rd party system
decides whether the user is allowed to charge

§ Session end
Called after a charge session has ended, with details on the charge
session. Data can be used for calculating a cost for the charge session.

- 3rd party payment solution using ZapCloud native users/authentication
o User and session are maintained in ZapCloud
o 3rd party can periodically call ZAPTEC’s session/charge history API to query

completed sessions for invoicing
- OCPP-J 1.6

o Build an OCPP-J 1.6 enabled cloud solution for authorization or payment, then
configure the ZAPTEC installation to authorize using your solution

o You assume control over session lifecycle and can do invoicing

Below we outline pre-requirements and invoice process for native and web hooks
authorization.

Figure 1; payment solution using web hooks

3rd partyZaptec

InCharge

HTTP
web hooks

SessionEnd

SessionStart

SessionsCustomers

HTTP Post / Authorize

HTTP Post / Commit

Do invoice action
when session has
ended (end hook
is triggered)

Start/Stop

Prerequirements:
- 3rd party must maintain a mapping from Zaptec charge point Id to customer, or token (RFID/idTag) to customer

Invoice sequence:
1. Zaptec calls SessionStart web hook with charge point Id and optionally a scanned RFID token
2. 3rd party must identify customer by charge point Id, RFID token, or other means, then returns session Id (UUID) if request is authorised
3. Zaptec calls SessionEnd web hook with session Id and other session data when charge is completed
4. 3rd party must invoice customer identified for session, according to provided session data

{
 token: {token},
 chargerId: {UUID},
 chargerName: string,
 installationId: {UUID},
 installationName: string
}

{
 sessionId: {UUID},
 sessionStart: {ISO 8601:UTC},
 sessionEnd: {ISO 8601:UTC},
 energy: double
}

Page 16 of 16

Figure 2; payment solution using native authentication

Dynamic load balancing
A charging station’s charging current and phase is dynamically controlled by ZapCloud. The
optimal charge configuration is calculated based on the charger’s installation properties and
runtime state of other charger’s is the installation. This is done transparently, always
ensuring that as many chargers as possible is providing as much charging power as possible.

In some scenarios 3rd parties may want to limit the charge power available for an
installation. E.g. to limit EV-charge power during costly peak hours, or prevent circuit
breakers tripping in other high load scenarios. This can be done through setting
AvailableCurrent using the installation update API method:
https://api.zaptec.com/help/index#!/Installation/Installation_ExternalUpdate.

Dashboards
Using Message subscriptions it is possible to build rich live dashboards and widgets that
aggregate and present key metrics of one or more ZAPTEC installations. Messages can be
received using Azure Service Bus libraries or AMQP 1.0 and data can be integrated with a
wide range of programming languages and solutions.

The live data can be used together with API methods like
https://api.zaptec.com/help/index#!/Charger/Charger_ChargerState, that provide an
instantaneous snapshot of the chargers current state, to provide a complete live
representation of the installation and chargers.

Zaptec

Sessions

Start/Stop
InCharge

REST API

Sessions (1.)

1.) https://api.zaptec.com/help/index#!/ChargeHistory/ChargeHistory_GetAll

HTTP GetUsers

3rd party

Do invoice action
periodically by
querying session
log / charge history

{
 "Data": [
 {
 "Id": "string",
 "ChargerId": "string",
 "StartDateTime": "2018-04-03T12:57:31.667Z",
 "EndDateTime": "2018-04-03T12:57:31.667Z",
 "Energy": 0,
 "UserId": "string",
 "UserUserName": "string",
 "UserFullName": "string"
 }
]
}

Prerequirements:
- 3rd party customers must register themselves as users in Zaptec portal, or 3rd party can invite users to installations
- 3rd party must maintain users permissions in Zaptec portal
- 3rd party must maintain a mapping from Zaptec user id, and/or Zaptec charge point id to customers

Invoice sequence:
1. 3rd party must periodically call Zaptec API to get a list of new completed sessions
2. 3rd party must map sessions to customers using Zaptec user id or Zaptec charge point id
3. 3rd party must invoice customers according to reported session data

Customers

